bitpie比特派app中文下载|数学什么叫质数

作者: bitpie比特派app中文下载
2024-03-09 20:20:14

请通俗易懂地讲讲什么是素数(质数)? - 知乎

请通俗易懂地讲讲什么是素数(质数)? - 知乎首页知乎知学堂发现等你来答​切换模式登录/注册数论素数初等数论请通俗易懂地讲讲什么是素数(质数)?本人不知道质数(素数)到底是什么,因数这些与它相关的数学术语也不知道。所以请通俗易懂地,尽可能简单地讲讲什么是质数,就如同跟小孩讲这个一样,谢谢。显示全部 ​关注者23被浏览68,504关注问题​写回答​邀请回答​好问题 2​添加评论​分享​17 个回答默认排序知乎用户​数学话题下的优秀答主小学的时候经常会把一些弹力球啊弹珠之类的东西摆成特定的形状玩。比如10颗弹珠,我们可以把它们摆放成2×5的长方形,或者5×2的长方形。总之可以摆出长方形。但是有一些数目的弹珠没法摆成长方形,只能摆成长长的一行或一列。这样的数目我们叫做素数。发布于 2020-09-29 23:15​赞同 46​​2 条评论​分享​收藏​喜欢收起​何冬州杨巅杨艳华典生​软件试用与测试​ 关注将自然数写成比它自己小的自然数的乘积,如果不能做到,那么它要么是0,要么是1,要么是质数。例如4=2*2,4可以写成比4小的数相乘,因此4不是素数。例如2,比2小的自然数有0和1,它们无论怎么相乘,得不到2,所以2是素数。再如3,比3小的自然数有0,1,2,它们无论怎么相乘,得不到3,所以3是素数。再如5,比5小的自然数有0,1,2,3,4,它们无论怎么相乘,得不到5,所以5是素数。关于0,1的特性,见后文说明。换个说法:一个自然数,如果它不是0,也不是1,它也不能分解成比它自己小的自然数的乘积,那么它是质数。30以内的质数有2,3,5,7,11,13,17,19,23,29外一则:一个自然数,如果它能分解成比它自己小的自然数的乘积,那么它是合数。30以内的合数有4,6,8,9,10,12,14,15,16,18,20,21,22,24,25,26,27,28合数分解成比它自己小的自然数的乘积举例:4=2*2=2^2,6=2*3,8=2*4=2*2*2=2^3,9=3*3=3^2,10=2*5,12=2*6=2*2*3=4*3=(2^2)*3,......综上,自然数可以分三类:{0,1}为一类,质数为一类,合数为一类。或者分四类:1,质数,合数,0{0,1},0的乘法属性是吸收一切,是随自己的,0乘以任何数得0;1的乘法属性是奉献自我,是随他人的,1乘以谁就等于谁。它们的共性,0乘0等于他自己,1乘1等于他自己,可以称呼它们为幂循环数。质数,它不是1,它被1和它自己整除,不能被其它数整除。能整除它的数,只有1和它自己,只有这2个。我们说他的因数有2个。合数,除了能被1和它自己整除,还能被小于它的其它数整除。能整除它的数,除了1和它自己,还有有限个。我们说他的因数有多个。1只能被1整除,我们说他的因数只有1,同时也是它自己,它只有1个因数。0除了能被1和它自己整除,还能被其它任意自然数整除。能整除它的数,除了1和它自己,还有无限个。我们说他的因数有无数个(无限,无穷,无穷多个)。我个人有个提议:将0,1,素数称为准数,或分解基数,在考虑自然数的分解时,它们是基本的、基础的数。相关答题:何冬州杨巅杨艳华典生:为什么1不算素数?何冬州杨巅杨艳华典生:请通俗易懂地讲讲什么是素数(质数)?何冬州杨巅杨艳华典生:对于特定的正整数n,能拆成不同的n组两个素数之和的偶数有是否只有有限多个?以下为2021-8-10新增{质数和合数这两个词,是相对反义词。自然数={非质数也非合敢(幂循环数)0,1}+{质数2,3,57,11,13,...}+{合数4,6,8,9,10,12,...}我提议:自然数={准数(或称分解基数0,1这两个幂循环数,和所有质数)}+{合数4,6,8,9,10,12,...}补注:1曾经被归入质数,但为了保证质因数分解的有效性和唯一性,后来将他从质数中区别出来。0在某种意义上既有与合数相似的属性,我也曾想到把它归入合数里面。后来又发现,0也有与质数相似的属性(将它要写成因数分解的形式,必须有他自己存在)。同时我们发现,0与1有一种共性,就是他们的乘幂具有幂循环性(幂守性,幂模不变性,幂的绝对值不变性):我们定义j具有幂循环性(幂守性),是指j^n∈有限集合F(当n遍历自然数集时)。在自然数集上也可以称为幂等性,对应j=0,1,有限集合F={0},{1};在(有理)整数集上,对应j=0,-1,有限集合F={0},{-1,1};在高斯整数集{形如a+b√(-1),(常常将√(-1)记作i);a,b为有理整数},对应j=0,√(-1),有限集合F={0},{-i,-1,i,1};在代数整数集上,...数的乘积分解,必须考虑到这种幂循环性。因此我们把幂循环数和质数合称为(积)分解基数,或者积准数,简称准数。8月13日新增:一、幂循环数:自然数范围内讨论:0的因数为任意自然数,即因子个数为∞个。1的因数只有1,即因子个数为1个。0的n≥1次方幂是0,1的n≥1次方幂是1,他们具有共性:幂等于它们自己。它们均归入 幂循环数。0以外的幂循环数称为幺数。幺数的概念扩展:如果一组幺数可以由一个幺数e的幂来生成,那么我们称这个幺数e为 本原幺数 或者 (本)母幺数,其他幺数为派生幺数。称这些幺数之间的关系为相伴。 如果一个数a=另外一个数b*幺数,我们也说a和b相伴。在整数范围内,1与-1均为幺数,其中-1是本原幺数。二、质数:自然数范围内讨论:因数个数=2个。质数概念扩展到整数范围:质数与它的相伴数,即质数*幺数=质数*{-1,1},均称为质数,也可以称为正质数与负质数。更广的扩充:质数的相伴数我们均称为质数。但是为了保证质因数分解的唯一性,我们最好是将基本的质数和本母幺数称为分解基数或准数,称为数的准数因子分解的唯一性,或者质因数分解的相伴数归并意义上的唯一性。(这些用辞有待进一步的标准化和简化。)}编辑于 2021-08-13 18:17​赞同 9​​9 条评论​分享​收藏​喜欢

质数_百度百科

度百科 网页新闻贴吧知道网盘图片视频地图文库资讯采购百科百度首页登录注册进入词条全站搜索帮助首页秒懂百科特色百科知识专题加入百科百科团队权威合作下载百科APP个人中心质数[zhì shù]播报讨论上传视频数学概念收藏查看我的收藏0有用+10质数是指在大于1的自然数中,除了1和它本身以外不再有其他因数的自然数。中文名质数外文名prime number别    名素数讨论范围非0自然数定    义只有1和它本身两个因数的自然数反义词合数所属范围自然数目录1简介2性质3应用4编程▪基本判断思路▪代码▪素性检测▪筛素数法5猜想▪哥德巴赫猜想▪黎曼猜想▪孪生质数▪梅森质数简介播报编辑质数又称素数。一个大于1的自然数,除了1和它自身外,不能被其他自然数整除的数叫做质数;否则称为合数(规定1既不是质数也不是合数)。质数的个数是无穷的。欧几里得的《几何原本》中有一个经典的证明。它使用了证明常用的方法:反证法。具体证明如下:假设质数只有有限的n个,从小到大依次排列为p1,p2,……,pn,设N=p1×p2×……×pn。如果 为素数,则 要大于p1,p2,……,pn,所以它不在那些假设的素数集合中。如果N+1为合数,因为任何一个合数都可以分解为几个素数的积;而N和N+1的最大公约数是1,所以不可能被p1,p2,……,pn整除,所以该合数分解得到的素因数肯定不在假设的素数集合中。因此无论该数是素数还是合数,都意味着在假设的有限个素数之外还存在着其他素数。所以原先的假设不成立。也就是说,素数有无穷多个。其他数学家给出了一些不同的证明。欧拉证明了全部素数的倒数之和是发散的,恩斯特·库默的证明更为简洁,哈里·弗斯滕伯格则用拓扑学加以证明。尽管整个素数是无穷的,仍然有人会问“100,000以下有多少个素数?”,“一个随机的100位数多大可能是素数?”。素数定理可以回答此问题。性质播报编辑1、质数p的约数只有两个:1和p。2、算术基本定理:任一大于1的自然数,要么本身是质数,要么可以分解为几个质数之积,且这种分解是唯一的。3、质数的个数是无限的。4、质数的个数公式 是不减函数。5、若n为正整数,在 到 之间至少有一个质数。6、若n为大于或等于2的正整数,在n到 之间至少有一个质数。7、在一个大于1的数a和它的2倍之间(即区间(a, 2a]中)必存在至少一个素数。8、存在任意长度的素数等差数列 [1]。 9、任一充分大的偶数都可以表示成一个素数加一个素因子个数不超过2个的数的和,简称为“1+2”。 [2]。应用播报编辑质数被利用在密码学上,所谓的公钥就是将想要传递的信息在编码时加入质数,编码之后传送给收信人,任何人收到此信息后,若没有此收信人所拥有的密钥,则解密的过程中(实为寻找素数的过程),将会因为找质数的过程(分解质因数)过久,使即使取得信息也会无意义。在汽车变速箱齿轮的设计上,相邻的两个大小齿轮齿数设计成质数,以增加两齿轮内两个相同的齿相遇啮合次数的最小公倍数,可增强耐用度减少故障。在害虫的生物生长周期与杀虫剂使用之间的关系上,杀虫剂的质数次数的使用也得到了证明。实验表明,质数次数地使用杀虫剂是最合理的:都是使用在害虫繁殖的高潮期,而且害虫很难产生抗药性。以质数形式无规律变化的导弹和鱼雷可以使敌人不易拦截。多数生物的生命周期也是质数(单位为年),这样可以最大程度地减少碰见天敌的机会。编程播报编辑基本判断思路在一般领域,对正整数n,如果用2到 之间的所有整数去除,均无法整除,则n为质数。代码Python 代码:from math import sqrt

def is_prime(n):

    if n == 1:

        return False

    for i in range(2, int(sqrt(n))+1):

        if n % i == 0:

            return False

    return TrueJava代码:1.  

 public static boolean testIsPrime2(int n){

       if (n <= 3) {

            return n > 1;

        }

       

       for(int i=2;i

           if(n%i == 0)

               return false;

       }

       return true;

   }

/*优化后*/

 public static boolean testIsPrime3(int n){

       if (n <= 3) {

            return n > 1;

        }

       

       for(int i=2;i<=Math.sqrt(n);i++){

           if(n%i == 0)

               return false;

       }

       return true;

   }

   

   

2.

public class Prime {

    public static void main(String[] args) {

        int a = 17; //判断17是不是质数

        int c = 0;

        for (int b = 2; b < a; b++) {

            if (a % b != 0) {

                c++;

            }

        }

        if (c == a - 2) {

            System.out.println(a + "是质数");

        } else {

            System.out.println(a + "不是质数");

        }

    }

}Php代码:function isPrime($n) {//TurkHackTeam AVP production

    if ($n <= 3) {

        return $n > 1;

    } else if ($n % 2 === 0 || $n % 3 === 0)  {

        return false;

    } else {

        for ($i = 5; $i * $i <= $n; $i += 6) {

            if ($n % $i === 0 || $n % ($i + 2) === 0) {

                return false;

            }

        }

        return true;

    }

}C#代码:using System;

 namespace 计算质数

 {

    class Program

    {

        static void Main(string[] args)

        {

            for (int i = 2,j=1; i < 2100000000&&j<=1000; i++)//输出21亿内的所有质数,j控制只输出1000个。

            {

                if (st(i))

                {

                    Console.WriteLine("{0,-10}{1}",j,i);

                    j++;

                }

            }

        }

        static bool st(int n)//判断一个数n是否为质数

        {

            int m = (int)Math.Sqrt(n);

            for(int i=2;i<=m;i++)

            {

                if(n%i==0 && i!=n)

                    return false;

           } 

            return true;

        }

    }

 }

 C代码:#include 

#include 

int main()

{

    double x,y,i;

    int a,b;

    x = 3.0;

    do{

        i = 2.0;

        do{

            y = x / i;

            a = (int)y;

            if(y != a)//用于判断是否为整数

            {

                if(i == x - 1)

                {

                    b = (int)x;

                    printf("%d\n",b);

                }

            }

            i++;

        }while(y != a);

        x++;

    }while(x <= 10000.0);//3到10000的素数

    system("pause");//防止闪退

    return 0;

}C/C++代码:#include

#include

#include

using namespace std;

const long long size=100000;//修改size的数值以改变最终输出的大小

long long zhishu[size/2];

void work (){//主要程序

    zhishu[1]=2;

    long long k=2;

    for(long long i=3;i<=size;i++){//枚举每个数

        bool ok=1;

        for(long long j=1;j

            if(i%zhishu[j]==0){

                ok=!ok;

                break;

            }

        }

        if(ok){

            zhishu[k]=i;

            cout<<"count"<

            k++;

        }

    }

}

int main(){

    freopen("zhishu.out","w",stdout);

    cout<<"count1 2"<

    work();

    return 0;

}bool isPrime(unsigned long n) {

    if (n <= 3) {

        return n > 1;

    } else if (n % 2 == 0 || n % 3 == 0) {

        return false;

    } else {

        for (unsigned short i = 5; i * i <= n; i += 6) {

            if (n % i == 0 || n % (i + 2) == 0) {

                return false;

            }

        }

        return true;

    }

}Pascal代码:function su(a:longint):boolean;

var

begin

    if a=2 then exit(true) else for i:=2 to trunc(sqrt(a))+1 do if a mod i=0 then exit(false);

    exit(true);

end.Javascript代码:function isPrime(n) {

    if (n <= 3) { return n > 1; }

    if (n % 2 == 0 || n % 3 == 0) { return false; }

    for (var  i = 5; i * i <= n; i ++) {

        if (n % i == 0 || n % (i + 1) == 0) { return false; }

    }

    return true;

}Go代码:func isPrime(value int) bool {

    if value <= 3 {

        return value >= 2

    }

    if value%2 == 0 || value%3 == 0 {

        return false

    }

    for i := 5; i*i <= value; i += 6 {

        if value%i == 0 || value%(i+2) == 0 {

            return false

        }

    }

    return true

}Basic 代码Private Function IfPrime(ByVal x As Long) As Boolean

    Dim i As Long

    If x < 0 Then x = -x

    If x = 2 Then Return True

    If x = 1 Then Return True

    If x = 3 Then Return False

    If x = 0 Then 

        MsgBox("error",,)

        Return False

    End If

    For i = 2 To Int(Sqrt(x)) Step 1

        If x Mod i = 0 Then Return False

    Next i

    Return True

End FunctionALGOL代码begin

    Boolean array a[2:100];

    integer i,j;

    for i := 2 step 1 until 100 do

    a[i] := true;

    for i := 2 step 1 until 10 do

        if a[i] then

                for j := 2 step 1 until 1000÷i do

                    a[i × j] := false;

    for i := 2 step 1 until 100 do

        if a[i] then

            print (i);

end            素性检测素性检测一般用于数学或者加密学领域。用一定的算法来确定输入数是否是素数。不同于整数分解,素性测试一般不能得到输入数的素数因子,只说明输入数是否是素数。大整数的分解是一个计算难题,而素性测试是相对更为容易(其运行时间是输入数字大小的多项式关系)。有的素性测试证明输入数字是素数,而其他测试,比如米勒 - 拉宾(Miller–Rabin )则是证明一个数字是合数。因此,后者可以称为合性测试。素性测试通常是概率测试(不能给出100%正确结果)。这些测试使用除输入数之外,从一些样本空间随机出去的数;通常,随机素性测试绝不会把素数误判为合数,但它有可能为把一个合数误判为素数。误差的概率可通过多次重复试验几个独立值a而减小;对于两种常用的测试中,对任何合数n,至少一半的a检测n的合性,所以k的重复可以减小误差概率最多到 ,可以通过增加k来使得误差尽量小。随机素性测试的基本结构:1、随机选取一个数字a。2、检测某个包含a和输入n的等式(与所使用的测试方法有关)。如果等式不成立,则n是合数,a作为n是合数的证据,测试完成。3、从1步骤重复整个过程直到达到所设定的精确程度。在几次或多次测试之后,如果n没有被判断为合数,那么可以说n可能是素数。常见的检测算法:费马素性检验(Fermat primality test),米勒拉宾测试(Miller–Rabin primality test) ,Solovay–Strassen测试,卢卡斯-莱默检验法(Lucas–Lehmer primality test)。筛素数法筛素数法可以比枚举法节约极大量的时间(定n为所求最大值,m为≤n的质数个数,那么枚举需要O(n^2)的时间复杂度,而筛素数法为O(m*n),显然m<

#include

#include

#include

using namespace std;

const long long size=1000000;//修改此值以改变要求到的最大值

bool zhishu[size+5]={false};

int main(){

    freopen("zhishu.out","w",stdout);//输出答案至“筛质数(shaizhishu).exe”所在文件夹内

    zhishu[2]=true;

    for(long long i=3;i<=size;i+=2)zhishu[i]=true;//所有奇数标为true,偶数为false

    for(long long i=3;i<=size;i++){

        if(zhishu[i]){//如果i是质数

            int cnt=2;

            while(cnt*i<=size){//把i的倍数标为false(因为它们是合数)

                zhishu[cnt*i]=false;

                cnt++;

            }

        }

    }

    int cnt=1;

    for(int i=2;i<=size;i++){//全部遍历一遍

        if(zhishu[i]){//如果仍然标记为true(是质数)则输出

            cout<

            cnt++;

        }

    }

    return 0;

}

/*

样例输出结果,第一个数是个数,第二个是第几个质数

1 2

2 3

3 5

4 7

5 11

6 13

7 17

8 19

9 23

10 29

11 31

12 37

13 41

14 43

15 47

16 53

17 59

18 61

19 67

20 71

21 73

22 79

23 83

24 89

25 97

*/筛选法的Java实现,如下:/**

 * @title SOE

 * @desc 简单的埃氏筛选法计算素数 

 * @author he11o

 * @date 2016年5月3日

 * @version 1.0

 */

public class SOE {

    public static int calPrime(int n){

        if(n<=1){

            return 0;

        }

        byte[] origin = new byte[n+1];

        int count = 0;

        for(int i=2;i

            if(origin[i] == 0){

                count++;

                int k = 2;

                while(i*k<=n){

                    origin[i*k] = 1; 

                    k++;

                }

            }else{

                continue;

            }

        }

        return count;

    }

}采用简单的埃氏筛选法和简单的开方判断素数法计算1000000以内素数的个数的效率比较:StopWatch '计算1000000以内素数的个数': running time (millis) = 268-----------------------------------------ms % Task name-----------------------------------------00024 009% 简单的埃氏筛选法;00244 091% 简单的开方判断素数法。猜想播报编辑哥德巴赫猜想:是否每个大于2的偶数都可写成两个素数之和?孪生素数猜想:孪生素数就是差为2的素数对,例如11和13。是否存在无穷多的孪生素数?斐波那契数列内是否存在无穷多的素数?是否有无穷多个的梅森素数?在n2与(n+1)2之间是否每隔n就有一个素数?是否存在无穷个形式如X2+1素数?黎曼猜想 [2]哥德巴赫猜想在1742年给欧拉的信中哥德巴赫提出了以下猜想:任一大于2的整数都可写成两个质数之和。因现今数学界已经不使用“1也是素数”这个约定,原初猜想的现代陈述为:任一大于5的整数都可写成三个质数之和。欧拉在回信中也提出另一等价版本,即任一大于2的偶数想陈述为欧拉的版本。把命题"任一充分大的偶数都可以表示成为一个素因子个数不超过a个的数与另一个素因子不超过b个的数之和"记作"a+b"。1966年陈景润证明了"1+2"成立,即"任一充分大的偶数都可以表示成二个素数的和,或是一个素数和一个半素数的和"。 今日常见的猜想陈述为欧拉的版本,即任一大于2的偶数都可写成两个素数之和,亦称为“强哥德巴赫猜想”或“关于偶数的哥德巴赫猜想”。从关于偶数的哥德巴赫猜想,可推出任一大于7的奇数都可写成三个质数之和的猜想。后者称为“弱哥德巴赫猜想”或“关于奇数的哥德巴赫猜想”。若关于偶数的哥德巴赫猜想是对的,则关于奇数的哥德巴赫猜想也会是对的。1937年时前苏联数学家维诺格拉多夫已经证明充分大的奇质数都能写成三个质数的和,也称为“哥德巴赫-维诺格拉朵夫定理”或“三素数定理”。2013年,秘鲁数学家哈拉尔德·赫尔弗戈特在巴黎高等师范学院宣称:证明了一个“弱哥德巴赫猜想”,即“任何一个大于7的奇数都能被表示成3个奇素数之和”。黎曼猜想黎曼猜想是关于黎曼ζ函数ζ(s)的零点分布的猜想,由数学家波恩哈德·黎曼(1826~1866)于1859年提出。德国数学家希尔伯特列出23个数学问题。其中第8问题中便有黎曼假设。素数在自然数中的分布并没有简单的规律。黎曼发现素数出现的频率与黎曼ζ函数紧密相关。黎曼猜想提出:黎曼ζ函数ζ(s)非平凡零点(在此情况下是指s不为-2、-4、-6等点的值)的实数部份是1/2。即所有非平凡零点都应该位于直线1/2 + ti(“临界线”(critical line))上。t为一实数,而i为虚数的基本单位。无人给出一个令人信服的关于黎曼猜想的合理证明。在黎曼猜想的研究中,数学家们把复平面上 Re(s)=1/2 的直线称为 critical line。 运用这一术语,黎曼猜想也可以表述为:黎曼ζ 函数的所有非平凡零点都位于 critical line 上。黎曼猜想是黎曼在 1859 年提出的。在证明素数定理的过程中,黎曼提出了一个论断:Zeta函数的零点都在直线Res(s) = 1/2上。他在作了一番努力而未能证明后便放弃了,因为这对他证明素数定理影响不大。但这一问题仍然未能解决,甚至于比此假设简单的猜想也未能获证。而函数论和解析数论中的很多问题都依赖于黎曼假设。在代数数论中的广义黎曼假设更是影响深远。若能证明黎曼假设,则可带动许多问题的解决。孪生质数1849年,波林那克提出孪生质数猜想(the conjecture of twin primes),即猜测存在无穷多对孪生质数。猜想中的“孪生质数”是指一对质数,它们之间相差2。例如3和5,5和7,11和13,10,016,957和10,016,959等等都是孪生质数。英国数学家戈弗雷·哈代和约翰·李特尔伍德曾提出一个“强孪生素数猜想”。这一猜想不仅提出孪生素数有无穷多对,而且还给出其渐近分布形式。2013年5月14日,《自然》(Nature)杂志在线报道张益唐证明了“存在无穷多个之差小于7000万的素数对”,这一研究随即被认为在孪生素数猜想这一终极数论问题上取得了重大突破,甚至有人认为其对学界的影响将超过陈景润的“1+2”证明。 [3]梅森质数17世纪还有位法国数学家叫梅森,他曾经做过一个猜想:当2p-1 中的p是质数时,2p-1是质数。他验算出:当p=2、3、5、7、17、19时,所得代数式的值都是质数,后来,欧拉证明p=31时,2p-1是质数。 p=2,3,5,7时,2p-1都是素数,但p=11时,所得2,047=23×89却不是素数。梅森去世250年后,美国数学家科尔证明,267-1=193,707,721×761,838,257,287,是一个合数。这是第九个梅森数。20世纪,人们先后证明:第10个梅森数是质数,第11个梅森数是合数。由于这种质数珍奇而迷人,它被人们称为“数学珍宝”。值得一提的是,中国数学家和语言学家周海中根据已知的梅森质数及其排列,巧妙地运用联系观察法和不完全归纳法,于1992年正式提出了梅森素质分布的猜想,这一重要猜想被国际上称为“周氏猜测”。新手上路成长任务编辑入门编辑规则本人编辑我有疑问内容质疑在线客服官方贴吧意见反馈投诉建议举报不良信息未通过词条申诉投诉侵权信息封禁查询与解封©2024 Baidu 使用百度前必读 | 百科协议 | 隐私政策 | 百度百科合作平台 | 京ICP证030173号 京公网安备110000020000

百度知道 - 信息提示

百度知道 - 信息提示

百度首页

商城

注册

登录

网页

资讯

视频

图片

知道

文库

贴吧采购

地图更多

搜索答案

我要提问

百度知道>提示信息

知道宝贝找不到问题了>_

该问题可能已经失效。返回首页

15秒以后自动返回

帮助

 | 意见反馈

 | 投诉举报

京ICP证030173号-1   京网文【2023】1034-029号     ©2024Baidu  使用百度前必读 | 知道协议 

百度知道 - 信息提示

百度知道 - 信息提示

百度首页

商城

注册

登录

网页

资讯

视频

图片

知道

文库

贴吧采购

地图更多

搜索答案

我要提问

百度知道>提示信息

知道宝贝找不到问题了>_

该问题可能已经失效。返回首页

15秒以后自动返回

帮助

 | 意见反馈

 | 投诉举报

京ICP证030173号-1   京网文【2023】1034-029号     ©2024Baidu  使用百度前必读 | 知道协议 

百度知道 - 信息提示

百度知道 - 信息提示

百度首页

商城

注册

登录

网页

资讯

视频

图片

知道

文库

贴吧采购

地图更多

搜索答案

我要提问

百度知道>提示信息

知道宝贝找不到问题了>_

该问题可能已经失效。返回首页

15秒以后自动返回

帮助

 | 意见反馈

 | 投诉举报

京ICP证030173号-1   京网文【2023】1034-029号     ©2024Baidu  使用百度前必读 | 知道协议 

质数 - 搜狗百科

搜狗百科质数(Prime number,又称素数),[1]指在大于1的自然数中,除了1和该数自身外,无法被其他自然数整除的数(也可定义为只有1与该数本身两个正因数的数)。网页微信知乎图片视频医疗汉语问问百科更多»登录帮助首页任务任务中心公益百科积分商城个人中心质数编辑词条添加义项同义词收藏分享分享到QQ空间新浪微博质数(Prime number,又称素数),[1]指在大于1的自然数中,除了1和该数自身外,无法被其他自然数整除的数(也可定义为只有1与该数本身两个正因数的数)。中文名质数展开类别数学展开定义一个大于1的自然数,除了1和它本身外,不再有其他的因数[2]展开外文名Prime number[3]展开数量无限个展开对应概念合数展开别名素数展开参考资料:1. 论微课对课堂教学改进的探究知网[引用日期2022-01-23]2. 数学家们努力探寻“质数公式”维普网[引用日期2022-05-23]3. 质数科技大数据知识发现平台[引用日期2022-04-06]词条标签:科学免责声明搜狗百科词条内容由用户共同创建和维护,不代表搜狗百科立场。如果您需要医学、法律、投资理财等专业领域的建议,我们强烈建议您独自对内容的可信性进行评估,并咨询相关专业人士。词条信息词条浏览:3094929次最近更新:23.11.22编辑次数:73次创建者:告别のGPO突出贡献者:新手指引了解百科编辑规范用户体系商城兑换问题解答关于审核关于编辑关于创建常见问题意见反馈及投诉举报与质疑举报非法用户未通过申诉反馈侵权信息对外合作邮件合作任务领取官方微博微信公众号搜索词条编辑词条 收藏 查看我的收藏分享分享到QQ空间新浪微博投诉登录企业推广免责声明用户协议隐私政策编辑帮助意见反馈及投诉© SOGOU.COM 京ICP备11001839号-1 京公网安备110000020000

质数公式_百度百科

_百度百科 网页新闻贴吧知道网盘图片视频地图文库资讯采购百科百度首页登录注册进入词条全站搜索帮助首页秒懂百科特色百科知识专题加入百科百科团队权威合作下载百科APP个人中心质数公式播报讨论上传视频数学术语收藏查看我的收藏0有用+10质数又称素数。指在一个大于1的自然数中,除了1和此整数自身外,没法被其他自然数整除的数。换句话说,只有两个正因数(1和自己)的自然数即为素数。比1大但不是素数的数称为合数。1和0既非素数也非合数。素数在数论中有着很重要的地位。质数公式,又称素数公式,在数学领域中,表示一种能够仅产生质数(素数)的公式。即是说,这个公式能够一个不漏地产生所有的质数,并且对每个输入的值,此公式产生的结果都是质数。由于质数的个数是可数的,因此一般假设输入的值是自然数集(或整数集及其它可数集)。迄今为止,人们尚未找到易于计算且符合上述条件的质数公式,但对于质数公式应该具备的性质已经有了大量的了解。素数定理(prime number theorem)是素数分布理论的中心定理,是关于素数个数问题的一个命题 [2]:设x≥1,以π(x)表示不超过x的素数的个数,当x→∞时,π(x)~Li(x)或π(x)~x/ln(x)。(Li(x)为对数积分) 中文名质数公式别    名素数类    型数学术语目录1素数定理2素数简介▪质数▪费马数▪梅森质数▪相关猜想▪算术基本定理▪素数等差数列素数定理播报编辑定理描述素数素数的大致分布情况。 素数的出现规律一直困惑著数学家。一个个地看,素数在正整数中的出现没有什么规律。可是总体地看,素数的个数竟然有规可循。对正实数x,定义π(x)为不大于x的素数个数。数学家找到了一些函数来估计π(x)的增长。以下是第一个这样的估计。 π(x)≈x/ln x 其中ln x为x的自然对数。上式的意思是当x趋近∞,π(x) 和x/ln x的比趋 近1(注:该结果为高斯所发现)。但这不表示它们的数值随着x增大而接近。 下面是对π(x)更好的估计: π(x)=Li (x) + O (x e^(-ln x)^(1/2)/15),当 x 趋近∞。 其中 Li(x) = ∫(dt/ln x2,x),而关系式右边第二项是误差估计,详见大O符号。素数定理可以给出第n个素数p(n)的渐近估计: :p(n)~n/ln n. 它也给出从整数中抽到素数的概率。从不大于n的自然数随机选一个,它是素数的概率大约是1/ln n。 这定理的式子於1798年法国数学家勒让德提出。1896年法国数学家哈达玛(Jacques Hadamard)和比利时数学家普森(Charles Jean de la Vallée-Poussin)先後独立给出证明。证明用到了复分析,尤其是黎曼ζ函数。 因为黎曼ζ函数与π(x)关系密切,关于黎曼ζ函数的黎曼猜想对数论很重要。一旦猜想获证,便能大大改进素数定理误差的估计。1901年瑞典数学家Helge von Koch证明出,假设黎曼猜想成立,以上关系式误差项的估计可改进为 :π(x)=Li (x) + O (x^(1/2) ln x) 至於大O项的常数则还未知道。素数定理有些初等证明只需用数论的方法。第一个初等证明於1949年由匈牙利数学家保罗·艾狄胥(“爱尔多斯”,或“爱尔多希”)和挪威数学家阿特利·西尔伯格合作得出。 在此之前一些数学家不相信能找出不需借助艰深数学的初等证明。像英国数学家哈代便说过素数定理必须以复分析证明,显出定理结果的「深度」。他认为只用到实数不足以解决某些问题,必须引进复数来解决。这是凭感觉说出来的,觉得一些方法比别的更高等也更厉害,而素数定理的初等证明动摇了这论调。Selberg-艾狄胥的证明正好表示,看似初等的组合数学,威力也可以很大。 但是,有必要指出的是,虽然该初等证明只用到初等的办法,其难度甚至要比用到复分析的证明远为困难。素数简介播报编辑质数质数的个数是无穷的。最经典的证明由欧几里得证得,在他的《几何原本》中就有记载。它使用了现在证明常用的方法:反证法。具体的证明如下:●假设质数只有有限的n个,从小到大依次排列为p1,p2,……,pn,设 N = p1 × p2 × …… × pn,那么,N+1是素数或者不是素数。●如果N+1为素数,则N+1要大于p1,p2,……,pn,所以它不在那些假设的素数集合中。●如果N+1为合数,因为任何一个合数都可以分解为几个素数的积;而N和N+1的最大公约数是1,所以N+1不可能被p1,p2,……,pn整除,所以该合数分解得到的素因数肯定不在假设的素数集合中。●因此无论该数是素数还是合数,都意味着在假设的有限个素数之外还存在着其他素数。●对任何有限个素数的集合来说,用上述的方法永远可以得到有一个素数不在假设的素数集合中的结论。●所以原先的假设不成立。也就是说,素数有无穷多个。其他数学家也给出了他们自己的证明。欧拉利用黎曼ζ函数证明了全部素数的倒数之和是发散的,恩斯特·库默的证明更为简洁,Hillel Furstenberg则用拓扑学加以了证明。尽管整个素数是无穷的,仍然有人会问“100000以下有多少个素数?”,“一个随机的100位数多大可能是素数?”。素数定理可以回答此问题。费马数被称为“17世纪最伟大的法国数学家”的费马,也研究过质数的性质。他发现,设Fn=2^(2^n)+1,则当n分别等于0、1、2、3、4时,Fn分别给出3、5、17、257、65537,都是质数,由于F5太大(F5=4294967297),他没有再往下检测就直接猜测:对于一切自然数,Fn都是质数。这便是费马数。但是,就是在F5上出了问题!费马死后67年,25岁的瑞士数学家欧拉证明:F5=4294967297=641×6700417,它并非质数,而是一个合数!更加有趣的是,以后的Fn值,数学家再也没有找到哪个Fn值是质数,全部都是合数。由于平方开得较大,因而能够证明的也很少。现在数学家们取得Fn的最大值为:n=1495。这可是个超级天文数字,其位数多达10^10584位,当然它尽管非常之大,但也不是个质数。梅森质数17世纪还有位法国数学家叫梅森,他曾经做过一个猜想:2^p-1 ,当p是质数时,2^p-1是质数。他验算出了:当p=2、3、5、7、17、19时,所得代数式的值都是质数,后来,欧拉证明p=31时,2^p-1是质数。 p=2,3,5,7时,2^p-1都是素数,但p=11时,所得2047=23×89却不是素数。还剩下p=67、127、257三个梅森数,由于太大,长期没有人去验证。梅森去世250年后,美国数学家科勒证明,2^67-1=193707721×761838257287,是一个合数。这是第九个梅森数。20世纪,人们先后证明:第10个梅森数是质数,第11个梅森数是合数。质数排列得这样杂乱无章,也给人们寻找质数规律造成了困难。美国中央密苏里大学数学教授柯蒂斯·库珀(CurtisCooper)领导的研究小组于1月25日发现了已知的最大梅森质数——2^57885161-1(即2的57885161次方减1);该质数有17425170位,如果用普通字号将它连续打印下来,它的长度可超过65公里! [1]人们在寻找梅森质数的同时,对其重要性质——分布规律的研究也一直在进行着。英、法、德、美等国的数学家都曾分别给出过有关梅森质数分布的猜测,但都以近似表达式给出,与实际情况的接近程度均难如人意。中国数学家、语言学家周海中是这方面研究的领先者,他于1992年首次给出了梅森质数分布的精确表达式。这一成果后来被国际上命名为“周氏猜测”。相关猜想哥德巴赫猜想哥德巴赫猜想(Goldbach Conjecture)大致可以分为两个猜想(前者称“强”或“二重哥德巴赫猜想”后者称“弱”或“三重哥德巴赫猜想”):1、每个不小于6的偶数都可以表示为两个奇素数之和;2、每个不小于9的奇数都可以表示为三个奇质数之和。黎曼猜想黎曼猜想是一个困扰数学界多年的难题,最早由德国数学家波恩哈德·黎曼提出,迄今为止仍未有人给出一个令人完全信服的合理证明。孪生质数猜想1849年,波林那克提出孪生质数猜想(the conjecture of twin primes),即猜测存在无穷多对孪生质数。猜想中的“孪生质数”是指一对质数,它们之间相差2。例如3和5,5和7,11和13,10016957和10016959等等都是孪生质数。算术基本定理任何一个大于1的自然数N,都可以唯一分解成有限个质数的乘积 N=(P_1^a1)*(P_2^a2)......(P_n^an) , 这里P_1<P_2<...<P_n是质数,其诸方幂 ai 是正整数。这样的分解称为N 的标准分解式。算术基本定理的内容由两部分构成:分解的存在性、分解的唯一性(即若不考虑排列的顺序,正整数分解为素数乘积的方式是唯一的)。算术基本定理是初等数论中一个基本的定理,也是许多其他定理的逻辑支撑点和出发点。此定理可推广至更一般的交换代数和代数数论。高斯证明复整数环Z[i]也有唯一分解定理。它也诱导了诸如唯一分解整环,欧几里得整环等等概念。 更一般的还有戴德金理想分解定理。素数等差数列存在任意长度的素数等差数列 [3]。等差数列是数列的一种。在等差数列中,任何相邻两项的差相等。该差值称为公差。类似7、37、67、97、127、157。这样由素数组成的数列叫做等差素数数列。2004年,格林和陶哲轩证明存在任意长的素数等差数列。2004年4月18日,两人宣布:他们证明了“存在任意长度的素数等差数列”,也就是说,对于任意值K,存在K个成等差级数的素数。例如 K=3,有素数序列3, 5, 7 (每两个差2)……K=10,有素数序列 199, 409, 619, 829, 1039, 1249, 1459, 1669, 1879, 2089 (每两个差210)。新手上路成长任务编辑入门编辑规则本人编辑我有疑问内容质疑在线客服官方贴吧意见反馈投诉建议举报不良信息未通过词条申诉投诉侵权信息封禁查询与解封©2024 Baidu 使用百度前必读 | 百科协议 | 隐私政策 | 百度百科合作平台 | 京ICP证030173号 京公网安备110000020000

质数(2,3,5,7,11,13,...)

质数(2,3,5,7,11,13,...)

RT

首页/数学/数字/质数

质数

什么是素数?

质数列表

0是质数吗?

1是质数吗?

2是素数吗?

什么是素数?

质数是一个正自然数,只有两个正自然数除数-一个和它本身。

质数的相反是合成数。复合数是一个正营养数,具有除一个或自身以外的至少一个正除数。

根据定义,数字1不是质数-它只有一个除数。

数字0不是质数-它不是正数并且具有无数个除数。

数字15的因数为1,3,5,15,因为:

15/1 = 15

15/3 = 5

15/5 = 3

15/15 = 1

因此15不是素数。

数字13只有两个除数1,13。

13/1 = 13

13/13 = 1

因此13是质数。

质数表

质数最大为100的列表:

2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97, ...

0是质数吗?

数字0不是质数。

零不是正数,并且具有无限大的除数。

1是质数吗?

根据定义,数字1不是质数。

一种是只有一个除数-本身。

2是素数吗?

数字2是质数。

两个具有2个自然数除数-1和2:

2/1 = 2

2/2 = 1

 

也可以看看

百分比(%)

英里数(‰)

百万分之一(ppm)

零号

常数

Advertising

号码

数字系统

百分比(%)

英里数(‰)

百万分之一(ppm)

零号

素数

常数

斐波那契数

乘法表

快速表格

推荐网站

发送反馈

关于

首页| 网页| 数学| 电力| 计算器| 转换器| 工具类

© 2024

RT | 关于| 使用条款| 隐私政策| 管理Cookies

该网站使用Cookie来改善您的体验,分析流量并展示广告。学到更多

确定 管理设置

什么叫质数? - 知乎

什么叫质数? - 知乎首页知乎知学堂发现等你来答​切换模式登录/注册数学哥德巴赫猜想什么叫质数?关注者18被浏览40,827关注问题​写回答​邀请回答​好问题​添加评论​分享​9 个回答默认排序匿名用户1、正整数 p ,如果它满足(p-1)!\equiv-1 \mod p\\ 那么它是质数。发布于 2020-04-13 22:34​赞同​​添加评论​分享​收藏​喜欢收起​李三畏​人在西四,刚下三轮​ 关注下午好,谢邀。 质数是指一种大于1的自然数a,它只能被自身或1整除。因而,质数a的定义式为: a=b(c+d)式中,a≠b∧b>1,b∈N*,c∈N*,d≠0.编辑于 2021-04-25 13:18​赞同 9​​添加评论​分享​收藏​喜欢

素数(又叫质数) – 整除和素数 – Mathigon

叫质数) – 整除和素数 – Mathigon请在浏览器中启用 JavaScript 以访问Mathigon。跳过导航Ploypad课程活动课程登入创建新帐户课程Ploypad活动课程计划暗模式更改语言 更改语言English中文DeutschRomânăTürkçe 登录到MathigonGoogleMicrosoft要么电子邮件或用户名密码新账户     重设密码     登入整除和素数因子和倍数整除规律素数(又叫质数)素数的分布最小公倍数最大公约数分享词汇表重置进度 分享 重置进度这将删除您在本课程中所有章节的进度和聊天数据,并且无法撤消!立即重置 词汇表选择左侧的一个关键字...整除和素数素数(又叫质数)阅读时间: ~10 min显示所有步骤我们在计算这些除数对时,会遇到一些只有第一对除数的数。一个例子是 13 – 它只有 除数1和13自己。这些特殊的数被称为__素数__. 它们不能被拆成两个稍小的数的乘积。 某种程度上,它们成了“原子数”。注意 1 自身 不是 一个素数, 所以首批的一些素数是 2, 3, 5, 7, 11, 13, …任意不是素数的数都能被写成素数的乘积形式:我们只要不断的把它分解成更多的部分直到所有 因子都是素数。例如,842×422×213×784=2×2×3×7现在 2, 3 和 7 是素数而且不能再被分解了。2 × 2 × 3 × 7 被称为84的 质因式, 同时 2, 3 和 7 是它的 质因子. 注意一些素数,比如这里的2,可以在一个质因式 里出现多次。每个整数都有一个质因式,但是没有两个数的质因式是一样的。更进一步,任意整数 都只有一种质因式写法 – 除非我们把素数不同顺序算成不同写法。这就是 算术基本定理(FTA-Fundamental Theorem of Arithmetic).利用算术基本定理能够使许多数学问题变得简单多了: 我们做多个数的质因数分解时,我们先独立 分解一个个数来解决问题,这样通常会简单很多,然后把这些结果组合起来从而解决原来 的问题。埃拉托色尼筛选法结果, 很难确定一个数是否是素数: 你总是必须找到它 全部 的质因数, 随着数变大 而变得越难确定。 然而,希腊数学家 - 昔兰尼古城的埃拉托色尼想到了 一个简单的算法来找出100内的全部素数: 埃氏素数筛选法.123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100首先我们需要写下100内的所有整数我们知道1不是素数,所以删掉它。最小的素数是2. 任何2的倍数都不是素数,因为它有个因子2。所以我们能够删掉所有2的倍数。在我们列表里下一个数是3 – 又是个素数. 所有3的倍数都不是素数,因为它有因子3, 所以我们也能删掉它们。下一个数4, 已经被删掉了,所以我们继续下个数5: 它又是个素数, 同理我们删掉所有5的倍数。下一个素数一定是, 因为6已经被删掉了. 再一次的,我们删掉它的倍数。下一个素数是. 但是请注意,它的所有倍数都是已被删掉3的倍数。对于剩下的所有其它数也是一样的情形。因此所有这些剩下的数都必定是素数。现在我们可以数数了,总共有个素数小于100。有多少个素数? 当然我们能够用埃氏素数筛选法找更大的数素。在100到200间有21个素数, 200到300间 有16个素数,在400到500间有17个素数,而且10000到10100间只有11个。素数看起来在不断的分散了,但是它们会终止吗? 存在一个 最大 或 最后 的素数吗?古希腊数学家亚历山大的欧几里德 第一个证明了存在无穷多个素数的, 通过下面的论证: 假设只有有限多个素数。P, P, P, P, P让我们把它们全部相乘,得到一个非常大的数,我们把它称为N.N = P × P × P × P × P现在我们思考下N + 1. 任何整除N的素数都不能整除N + 1. 而且因为所有整除N的素数都已经被找到了, 它们中也不存在能够整除N + 1的.P, P, P, P, P NP, P, P, P, P N + 1根据算术基本定理我们知道N + 1必定有个质因数P’, 它不是N + 1自身,也不是其它新的能够整除N + 1的素数。P’ N + 1在这两种情况下,我们找到了一个新的素数它却不在我们的原始列表中,但我们又假设了所有素数都在这个列表中。显然出了什么问题!但是从步骤2–4都是绝对有效的,唯一的可能性是我们在步骤1中的初始假设是错误的。这意味着一定有无穷多个的素数。欧几里得的解释是历史上第一个正式数学__证明__的例子 — 表明一个陈述一定是正确的 逻辑论证。这个例子通常被称为__反证法__:我们从一个假设开始,推断出一些不可能的事情,从而知道我们的假设一定是错误的。要显示更多内容,您必须完成以上所有活动和练习。 你被卡住了吗? 跳到下一步 要么 显示所有步骤接下来:素数的分布 Archie